Klinik für RadioOnkologie UniversitätsSpital Zürich Universität Zürich

32nd Residential Course, MRO, Modern Radiation Oncology: Multidisciplinarity in the era of omics and AI guided Oncology

Omics and AI driven radiation oncology in Oligometastatic patients

Matthias Guckenberger

Conflicts of interest

None

What`s in the title

- Oligometastatic
- Omics
- Artificial intelligence
- **Radiation Oncology**

Al for multimodal data integration in oncology

REFERENCES: Lipcova Cancer Cell 2022

Al for multimodal data integration in oncology

What is the goal / are the goals of integrating local RT into a multimodality Tx strategy for oligometastatic patients ?

Universität

Spital Zürich

Universität

Zürich

Oligometastatic Disease (OMD)

Cure with local treatment

Universität

Zürich

niversitäts

Spital Zürich

Possibility of cure with local & systemic treatment

Local Tx for symptom control

REFERENCES: Hellman & Weichselbaum JCO 1995

Oligometastatic Disease (OMD)

The specific challenge in OMD

 To safely deliver definitive radiotherapy to multiple sites of disease

while

• the risk of microscopic disease is addressed by patient selection OR effective systemic therapy.

Oligometastatic Disease (OMD)

Clinical goal	Study	Tumor site	Endpoint	Result
	Ruers JNCI 2017	Colorectal Ca	OS	HR=0.58
Curro	Palma Lancet 2019	Agnostic	OS	HR=0.5
Cure	Gomez JCO 2019 NSCLC OS	OS	HR=0.41	
	Wang JNCI 2021	NSCLC	OS	HR=0.44

Different clinical goals and new clinical endpoints

Universitäts Spital Zürich

Universität Zürich^{uz}

Heterogeneity of OMD

Need for more comprehensive OMD characterization

Heterogeneity of OMD

> Heterogeneity comparable to variation between stage I - IV

Characterisation and classification of oligometastatic disease: a European Society for Radiotherapy and Oncology and European Organisation for Research and Treatment of Cancer consensus recommendation

Matthias Guckenberger, Yolande Lievens, Angelique B Bouma, Laurence Collette, Andre Dekker, Nandita M deSouza, Anne-Marie C Dingemans, Beatrice Fournier, Coen Hurkmans, Frédéric E Lecouvet, Icro Meattini, Alejandra Méndez Romero, Umberto Ricardi, Nicola S Russell, Daniel H Schanne, Marta Scorsetti, Bertrand Tombal, Dirk Verellen, Christine Verfaillie, Piet Ost

To develop a consensus nomenclature and comprehensive system for OMD characterization and classification

Decision tree resulting in 9 different states of OMD

REFERENCES: Guckenberger Lancet Oncology 2020

Consensus proposal of different OMD states, exclusively depending on clinical factors

REFERENCES: Guckenberger Lancet Oncology 2020

N=389 OMD patients treated for max 5 mets @ USZ

Independent prognostic factor

Universität

Zürich

Jniversität

Spital Zürich

REFERENCES: Willmann Radiother Oncol 2022

04/2014	05/2015	04/2016	09/2016	12/2016	06/2017	09/2017	06/2018	05/2019	08/2019	03/2020	07/2020	03/2021	09/2021	02/2022
Localized	Oligo	Oligo	Oligo	Oligo	Poly	Poly	PR	Oligo	CR	CR	Oligo	Oligo	CR	Poly
Surgery	2x SBRT	1x SBRT	1x SBRT	3x SBRT	-	2x Pall RT	-	1x SBRT	-	-	1x SBRT	3x SBRT		

➢ 8 year history of NSCLC

Universitäts

Spital Zürich

> n=1 surgery in curative intent

Universität

Zürich

- n=2 lines of systemic therapy (chemotherapy & Nivolumab)
- ➤ n=12 SBRT for n=7 phases of OMD

REFERENCES: Guckenberger Lancet Oncology 2020

Dynamic oligometastatic states model

Depending on response and failure pattern to multiple lines of systemic and / or local therapy

REFERENCES: Guckenberger Lancet Oncology 2020

Al for multimodal data integration in oncology

REFERENCES: Lipcova Cancer Cell 2022

1 2 3 4 5

Guideline and clinical trial perspective: ➤ No need for Omics and AI covering if you can count to 5

Study	# patients	Tumor site	# of metastses	Primary
lyengar Jama Oncol 2018	N=29	NSCLC	5	active
Gomez JCO 2019	N=49	NSCLC	3	active
Wang JNCI 2021	N=133	EGFR pos NSCLC	5 in max. 2 organs	active
Ost JCO 2018	N=62	Prostate	3 (N1 included)	controlled
Phillips JAMA Oncol 2020	N=54	Prostate	3 (N1 included)	controlled
Ruers JNCI 2017	N=119	Colorectal liver mets	9	controlled
Palma JCO 2019	N=99	Agnostic	5	controlled

Mostly maximum n=5 or n=3 metastases
 7 randomised phase II trials, 6 different OMD definitions

Universitäts Spital Zürich

Analysis of n=7.000 PET images acquired in 2020 @ USZ

Pancreas, liver, and gallbladder	37/63	59%
Skin Ca	116/204	57%
Prostate Ca	80/141	57%
Head & neck Ca	53/93	57%
Colorectal Ca	39/69	57%
Lung and pleura Ca	160/292	55%
Upper GI Ca	13/26	50%
Breast Ca	47/119	39%
Genitourinary Ca	27/69	39%
CUP	8/31	26%
Other	21/44	48%

Between 40% and 55% of metastatic cancer patients are oligometastatic based on PET and c-MRI imaging

Of n=637 pts with \leq 5 metastases in whole body PET/CT imaging

- Cranial MRI performed in 130 / 637 pts (20%) within 4 weeks of PET imaging
- > 36/130 (28%) pts with brain mets such that total # of metastases exceeded OMD definition

Not surprisingly, imaging matters !
 Relevance of brain metastases
 Exclusion criteria in some trials
 Efficacy of systemic Tx variable

n=1,754 FDG-PET or PSMA-PET studies from 1,155 unique cancer patients showed presence of metastatic disease

Universität

Spital Zürich

- Biphasic distribution with either very few or multiple metastases
- No cut-off in between
- Implications for clinical trial design
- Distribution mimicking patient characteristics from clinical trials

REFERENCE: Christ in preparation

Systematic review of oligometastastic NSCLC

Universität

Zürich

Universitäts

Spital Zürich

Evidence in OMD - strongly based on solitary metastases

REFERENCES: Schanne Cancer Treatment Reviews 2019

Yolande Lievens^{a,*}, Matthias Guckenberger^b, Daniel Gomez^c, Morten Hoyer^d, Puneeth Iyengar^e, Isabelle Kindts^f, Alejandra Méndez Romero^g, Daan Nevens^h, David Palmaⁱ, Catherine Park^j, Umberto Ricardi^k, Marta Scorsetti¹, James Yu^m, Wendy A. Woodward^c

Maximum disease burden KQ 5: Is OMD defined by a maximum number of lesions and/or sites? No, the possibility to safely deliver curative intent metastasis-directed radiotherapy determines the maximum number

Cancer including OMD - a spectrum of diseases

REFERENCE: *Pitroda Nature Reviews 2019, Lievens Radiother Oncol 2020*

82% (9/11)

Proportion of NSCLC pts developing distant metastases

Stage I	Stage III	OMD	Stage IV
SBRT	PACIFIC	Multimodality	Chemo IO
Chan Lancet Oncol 2021	Spigel JCO 2022 Bradly JCO 2020	Gomez JCO 2019	Gandhi NEJM 2018
10%	24% - 52%	72%	100% ?

Macroscopic tumor burden surrogate for risk / burden of microscopic disease

Clinical criteria for definition of OMD

Elekta OMD consortium	DEGRO OMD Project	Zurich OMD Cohort
Poon JAMA Network Open 2020	Tandini-Lang Radiother Oncol 2017	Willmann IJROBP 2022
N=1033	N=907	N=385
Primary tumor	Primary tumor	Primary tumor
Synchonous vs metachronous		
Organ involvement		
	Performance status	
	Primary controlled	
	Solitary metastasis	
	Size of largest metastasis	
		OMD state

USZ Universitäts Spital Zürich Universität

Clinical criteria for definition of OMD

Universität

Zürich^{⊍z⊮}

man

Universitäts

Spital Zürich

Nomogram		Sum score	MS (months)	2y OS (%)	5y OS (%)	5
Nonogram		0 - 2 -	42 36	74 70 -	³⁹ -	Low risk
Risk factor presence	Points	4 -	30 -	60 -	30 -	Low
Male sex	4	6-	24 -	50 -	20 -	intermediate risk
Timing: synchronous disease Brain metastasis present	2 7	10	18-	40	-	High intermediate
Non-adenocarcinoma	7	12 - 14 -			10 -	risk
KPS < 80 (ECOG > 1)	8	16	12 -	30 -	5 -	
Sum score:	→	18 - 20 -	6-	20 -		High
		22 -		10-	0	risk
		24 -	3 -	_		
		20	16	0 -		

Prognostic but not predictive !

REFERENCE: Tandini-Lang Radiother Oncol 2017; van den Begin Radiother Oncol 2019

Al for multimodal data integration in oncology

REFERENCES: Lipcova Cancer Cell 2022

OMD: biologically a disease state with **limited metastatic capacity**

OMD

Osimertinib

Pembrolizumab

SBRT

Universität

Zürich

Z Universitäts Spital Zürich

REFERENCES: Gundem Nature 2015

Universität Zürich[™]

Jniversitäts

Spital Zürich

Oliogometastatic lung disease

- Surgical resection of oligometastatic lung disease in 42 pts
- Micro-RNA expression profile

Correlation with systemic progression and survival

Lack of validation despite 8 years old

REFERENCES: Lussier PLOS 2012

Retrospective study of 134 patients treated surgically for colorectal liver metastases

Hypothesis generating w/o validation so far

Universitäts

Spital Zürich

Universität

Zürich

REFERENCES: Pitroda Nature Communication 2018

Somatic mutations across metastatic castration-sensitive prostate cancer

- Mutations in TP53 and DNA double-strand break repair associated with a higher number of metastases
- Mutations in TP53 associated with rPFS and the development of CRPC
- Spectrum of diseases

OMD: biologically a disease state with limited metastatic capacityPD-L1EGFROMD

Component for risk stratification, no "OMD biomarker"

Universitäts

Spital Zürich

Universität

Zürich

CancerSEEK

Cell-free DNA fragmentation

Eight circulating protein biomarkers and tumor-specific mutations in circulating DNA

Universität

Zürich

Universitäts

Spital Zürich

Machine learning model incorporating genome-wide cell-free DNA fragmentation

Liquid biopsy for cancer screening

REFERENCES: Cohen Science 2018, Christiano Nature 2019

Characterization of lung cancer using cell-free DNA fragmentomes

DELFI score vs Tumor stage

Universität

Zürich

Iniversitäts

Spital Zürich

Association with macroscopic tumor burden
 Independent prognostic factor in lung cancer patients

REFERENCES: Mathios Nature Communications 2021

Prognostic value of DELFI score

Early Detection of **Molecular Residual Disease** in Localized Lung Cancer by Circulating Tumor DNA Profiling

Molecular Residual Disease (MRD) for

- response monitoring
- ➤ early recurrence detection

Universitäts Spital Zürich

REFERENCES: Chaudhuri Cancer Discovery 2017

The NEW ENGLAND JOURNAL of MEDICINE

First RCT demonstrating the predictive value of circulating tumor DNA in decicion making for or against adjuvant CHT

Universität

Zürich

Cell-free DNA follow-up after Tx of oligometastatic pts

NSCLC OMD after LCT

Colorectal OMD after SBRT

\succ Much to study in OMD !

Universität

Zürich

Universitäts

Spital Zürich

REFERENCES: Tang IJROBP 2020; Nakamura Anticancer Research 2021

Primary diagnosis Re-Staging after induction Induction phase MRD positive

• Metastasis-individual analysis for identification of local target volume

- Metastasis-individual analysis for identification of local target volume
 - Differentiation between active vs non-active disease
 - Identification of resistance metastases

Universitäts Spital Zürich [™]

 Metastasis-individual analysis for identification of local target volume
 More in depth analysis of each individual metastases using Radiomics

USZ Universitäts Spital Zürich Universität

Metastatic melanoma pts treated with IO

OMD pts treated with SBRT

Cumulative tumor volume indendent prognostic factor, not # of mets

Cumulative tumor volume indendent prognostic factor in OMD pts

Macroscopic tumor burden surrogate for risk / burden of microscopic disease -> automation needed

REFERENCE: Kim IJROBP 2022; Cao Cancer Med 2021

Multi-Omics approch in OMD

To integrate results of tissue, liquid and imaging biomarkers in OMD patients

Radiotherapy for OMD

Phase I ARREST trial

- Patients with > 10 metastases
- No available systemic treatment option

De-escalation dose level

– Dose level 0: 6Gy × 1 fraction to all sites in 1 week.

Escalation dose levels

- Dose level 1: 6Gy × 2 fractions to all sites in 2 weeks.
- Dose level 2: 6Gy × 3 fractions to all sites in 3 weeks.
- Dose level 3: 6Gy × 4 fractions to all sites in 4 weeks.
- Dose level 4: 6Gy × 5 fractions to all sites in 5 weeks.

Planning study: feasibility of delivering 30Gy/5 (n=2) and 12Gy/2 (n=1) in 3 pts with 24 – 50 metastases

^{it} **REFERENCES:** Corkum Advances in Radiation Oncology 2021; Baumann BMC Cancer 2021

Radiotherapy for OMD

EUD based cell killing modell for planning of n=34 pulmonary metastases

Treating multiple metastases will required more intelligent approches of RT than one size fits all

Universität

Zürich

REFERENCES: Unkelbach & Guckenberger, unpublished data

Summary & Conclusion

- Concept of OMD offers hope for many cancer patients
- Initial trial results based one phase II data are promising
- Lack of consistent prognostic markers, total lack of predictive markers
- Strong need for increased efforts in clinical and translational research

OligoCare cohort of ESTRO & EORTC E2Radiate

Prospective registry trial to identify patient, tumor, staging and treatment characteristics impacting overall survival. Thus, overall survival is the primary endpoint of this research project.

FSTRO

First cohort within the EORTC ESTRO E2R study

Matthias Guckenberger, Piet Ost

The future of cancer therapy

ESTRO & EORTC OligoCare

> >1.600 included pts included, 80 pts per month
 > Italian centers are THE TOP RECRUITERS – THX !

Universitäts Spital Zürich